Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochemistry ; 63(5): 651-659, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38388156

RESUMO

AMPylation is a post-translational modification utilized by human and bacterial cells to modulate the activity and function of specific proteins. Major AMPylators such as human FICD and bacterial VopS have been studied extensively for their substrate and target scope in vitro. Recently, an AMP pronucleotide probe also facilitated the in situ analysis of AMPylation in living cells. Based on this technology, we here introduce a novel UMP pronucleotide probe and utilize it to profile uninfected and Vibrio parahaemolyticus infected human cells. Mass spectrometric analysis of labeled protein targets reveals an unexpected promiscuity of human nucleotide transferases with an almost identical target set of AMP- and UMPylated proteins. Vice versa, studies in cells infected by V. parahaemolyticus and its effector VopS revealed solely AMPylation of host enzymes, highlighting a so far unknown specificity of this transferase for ATP. Taken together, pronucleotide probes provide an unprecedented insight into the in situ activity profile of crucial nucleotide transferases, which can largely differ from their in vitro activity.


Assuntos
Nucleotídeos , Transferases , Humanos , Nucleotídeos/metabolismo , Transferases/metabolismo , Proteínas de Bactérias/química , Monofosfato de Adenosina/metabolismo , Processamento de Proteína Pós-Traducional
2.
Appl Environ Microbiol ; 86(16)2020 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-32503913

RESUMO

Triclocarban (TCC), a formerly used disinfectant, kills bacteria via an unknown mechanism of action. A structural hallmark is its N,N'-diaryl urea motif, which is also present in other antibiotics, including the recently reported small molecule PK150. We show here that, like PK150, TCC exhibits an inhibitory effect on Staphylococcus aureus menaquinone metabolism via inhibition of the biosynthesis protein demethylmenaquinone methyltransferase (MenG). However, the activity spectrum (MIC90) of TCC across a broad range of multidrug-resistant staphylococcus and enterococcus strains was much narrower than that of PK150. Accordingly, TCC did not cause an overactivation of signal peptidase SpsB, a hallmark of the PK150 mode of action. Furthermore, we were able to rule out inhibition of FabI, a confirmed target of the diaryl ether antibiotic triclosan (TCS). Differences in the target profiles of TCC and TCS were further investigated by proteomic analysis, showing complex but rather distinct changes in the protein expression profile of S. aureus Downregulation of the arginine deiminase pathway provided additional evidence for an effect on bacterial energy metabolism by TCC.IMPORTANCE TCC's widespread use as an antimicrobial agent has made it a ubiquitous environmental pollutant despite its withdrawal due to ecological and toxicological concerns. With its antibacterial mechanism of action still being unknown, we undertook a comparative target analysis between TCC, PK150 (a recently discovered antibacterial compound with structural resemblance to TCC), and TCS (another widely employed chlorinated biphenyl antimicrobial) in the bacterium Staphylococcus aureus We show that there are distinct differences in each compound's mode of action, but also identify a shared target between TCC and PK150, the interference with menaquinone metabolism by inhibition of MenG. The prevailing differences, however, which also manifest in a remarkably better broad-spectrum activity of PK150, suggest that even high levels of TCC or TCS resistance observed by continuous environmental exposure may not affect the potential of PK150 or related N,N'-diaryl urea compounds as new antibiotic drug candidates against multidrug-resistant infections.


Assuntos
Proteínas de Bactérias/genética , Carbanilidas/farmacologia , Desinfetantes/farmacologia , Enterococcus/efeitos dos fármacos , Metiltransferases/genética , Staphylococcus aureus/efeitos dos fármacos , Proteínas de Bactérias/metabolismo , Enterococcus/genética , Enterococcus/metabolismo , Metiltransferases/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...